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SUMMARY

New techniques for improving both the computational and imaging performance of the three-
dimensional (3-D) electromagnetic inverse problem are presented. A non-linear conjugate
gradient algorithm is the framework of the inversion scheme. Full wave equation modelling for
controlled sources is utilized for data simulation along with an efficient gradient computation
approach for the model update. Improving the modelling efficiency of the 3-D finite difference
(FD) method involves the separation of the potentially large modelling mesh, defining the set of
model parameters, from the computational FD meshes used for field simulation. Grid spacings
and thus overall grid sizes can be reduced and optimized according to source frequencies and
source—receiver offsets of a given input data set. Further computational efficiency is obtained by
combining different levels of parallelization. While the parallel scheme allows for an arbitrarily
large number of parallel tasks, the relative amount of message passing is kept constant. Image
enhancement is achieved by model parameter transformation functions, which enforce bounded
conductivity parameters and thus prevent parameter overshoots. Further, a remedy for treating
distorted data within the inversion process is presented. Data distortions simulated here include
positioning errors and a highly conductive overburden, hiding the desired target signal. The
methods are demonstrated using both synthetic and field data.

GJI Geomagnetism, rock magnetism and palaecomagnetism
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1 INTRODUCTION

Controlled source electromagnetic (CSEM) techniques use the elec-
tromagnetic energy of an artificial transmitter for detecting contrasts
in the subsurface electrical conductivity. The bulk conductivity of
rocks is dominated by the content of pore fluids, owing to the typi-
cally strong contrast between the highly resistive minerals and non-
mineral substances, such as water, brine, or hydrocarbons. Even pore
fluid substances can exhibit conductivity contrasts which are easily
detectable by CSEM methods. While saline formation water has a
typical resistivity range between 0.5 and 22 m, the resistivity of hy-
drocarbon filled rocks can be up to two orders of magnitude larger
(Schlumberger 1987). This has recently made the marine CSEM
technique emerge with considerable potential of providing valu-
able complementary data to seismic hydrocarbon mapping. Seismic
methods have a long and established history in hydrocarbon explo-
ration, because they are proven to be very effective in mapping geo-
logical horizons with contrasting acoustic properties. CSEM meth-
ods, on the other hand, may delineate the different types of fluids
within the horizon. With the marine CSEM method, a deep-towed
electric bipole transmitter is used to excite a low-frequency (typ-
ically 0.1-10 Hz) electromagnetic signal that is measured on the
sea floor over electric and magnetic field detectors, where larger
transmitter—detector offsets can exceed 15 km (MacGregor & Sinha
2000; Eidesmo et al. 2002; Ellingsrud et al. 2002). With the current
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technology, typical depths of investigation range from 1 to 4 km for
offshore prospects.

Large-scale CSEM three-dimensional (3-D) geophysical imag-
ing is now receiving considerable attention (Carazzone et al. 2005).
While one-dimensional (1-D) modelling is relatively easy and trial
and error 3-D forward modelling straight forward (Hoversten et al.
2006; Weiss & Constable 2006), the need for 3-D imaging is nec-
essary as the search for hydrocarbons now increasingly occurs in
highly complex and subtle offshore geological environments. This
also further emphasizes the importance of combining the informa-
tion obtained by CSEM surveys with existing 3-D seismic depth
migration technologies (Hoversten et al. 2000). Faster 2-D CSEM
imaging has some relevance to this problem. However, because of
its assumption of 2-D geology, it cannot always be relied upon for a
consistent treatment of the real environment, especially when mea-
surements are made on survey grids specifically designed for 3-D
imaging experiments (Carazzone et al. 2005).

In this study, we present techniques which further advance the
3-D CSEM inversion technique. Its inherently high computational
requirements are a main obstacle to industrial applications. Whether
finite volume, finite element, or finite difference (FD) techniques are
used for simulating measurements in three dimensions, the mod-
elling grids designed for approximating complex geology on a large
scale usually become too computationally expensive for carrying out
fast forward simulations. On the other hand, industrial large-scale
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Figure 1. Illustration of scheme for mapping between model and simulation
grid. (a) shows the equal-grid case. (b) illustrates the case of different grids
in two dimensions.

3-D surveys with vast data volumes require both large modelling
grids as well as many forward simulations; each CSEM transmitter
location requires a separate forward calculation for simulating its
response. To mitigate this problem, we present a method where the
computational simulation grids are decoupled from an underlying
common modelling grid. The latter represents the conductivity vari-
ation within the survey area. A simulation grid can then be adapted
and thus optimized specifically to the geometries and offsets of a
given transmitter and its detectors.

Since CSEM inversion is an ill-posed problem, implementation
of constraints is important in reducing the solution ambiguity. We
present new types of constraints, realized by model parameter trans-
formation functions, to address this issue. Thereby, the electrical
conductivity updates during the inversion process are restricted such
that non-realistic results are suppressed.

A further technique outlined in this paper aims at efficiently using
computing resources for the case of very large data sets. It is realized

by the combination of two different levels of parallelization. On the
first level, the solution of the forward simulation problem is dis-
tributed among a bank of processors. This solution parallelization
scales linearly up to a point where the necessary message passing
required for completing matrix—vector multiplications in the itera-
tive solution becomes dominant. To maintain the ability to use an
arbitrarily large number of processors without a prohibitive mes-
sage passing overhead, the solution of multiple forward problems is
further distributed among groups of processor banks.

Furthermore, we have experimented with the source signature es-
timation applied to the CSEM inversion problem. While the source
signature estimation problem is common in seismic waveform inver-
sion, it also promises to alleviate data distortions in both amplitude
and phase which might otherwise have negative effects on CSEM
inverse modelling.

After introducing the theory for both the CSEM inverse and for-
ward problems, the grid separation technique is outlined. Key to this
approach is a proper material averaging scheme to map the conduc-
tivity parameters of the geological model to the computational grids
used for the field solution in the forward problem. Consequently, the
inverse problem requires an inverse mapping scheme to update the
model parameters from the field solutions obtained on the compu-
tational simulation grids. In an earlier work (Commer & Newman
2005), we applied similar multigrid concepts to a finite-difference
time-domain modelling scheme. This involved the averaging of ma-
terial properties on a sequence of coarser simulation grids.

We next present various marine CSEM imaging scenarios us-
ing synthetic data to demonstrate the highly improved efficiency
achieved by optimizing the simulation grids. This also includes in-
version examples where the source signature estimation problem is
solved within the inversion framework in order to correct for highly
distorted data. At last, the inversion of real field data is presented,
where the grid separation method is also further demonstrated. We
use a data set of the Troll West Gas Province, located offshore
Norway (Gray 1987). These measurements have been used for cal-
ibration purposes and modelling studies, since the data is known
to contain strong signals caused by a large hydrocarbon reservoir
(Johansen et al. 2005; Hoversten et al. 2006).

2 PROBLEM FORMULATION

We give a brief introduction of both the inverse and forward simu-
lation problem. This shall provide the necessary framework for the
concept of separating the model parameter grid from the computa-
tional simulation grids, presented later. A more detailed formulation
of the EM inverse problem can be found in the works of Newman
& Alumbaugh (1997, 2000) and Newman & Hoversten (2000).

The inverse problem is formulated by the minimization of the
error functional,

1
2
where H denotes the transpose-conjugation operator. In the above
expression, the predicted and observed data vectors are denoted by
dP and d°, respectively, where each has N, complex values. These
vectors consist of electric or magnetic field values specified at the
measurement points. The predicted data are determined through
solution of the forward modelling problem, discussed below. We
have also introduced a diagonal weighting matrix, Dy, ,, into the
error functional to compensate for noisy measurements; it is typ-
ically based on the inverse of the standard deviations of the
measurements.

& = —[D(d° — d”)]"[D(d° — d”)] + %A(Wm)H(Wm), (1)
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Figure 2. Graph of the hyperbolic and logarithmic inversion parameter transformations, given by eqs (11) and (14). The example shows the values of m for

values of a = 0.1, b =3 and —10 < x; < 10.

Table 1. List of model and simulation grids for synthetic data gen-
eration and inversion.

Grid Number of cells Spacing A(m) f (Hz)
Q4 200 x 200 x 200 50
Qu 134 x 134 x 134 75
QL 50 x 50 x 50 200 0.25
Q% 80 x 80 x 80 125 0.75
Q3 100 x 100 x 100 100 1.25

In eq. (1), the properties of the model space are given by the
vector m. In our FD formulation, the model space consists of a
3-D mesh of rectangular cells, where the inversion domain can be
represented by the whole model space or a subset of it. Each cell
has electrical conductivities, dielectric and magnetic permeability
properties assigned to it. Here, we only consider varying electrical
conductivities o as unknowns in the inverse problem.

The second term in eq. (1) is a regularization term which acts
on the parameter unknowns and is required to stabilize the mini-
mization of the error functional. Many choices are available. In our
past work, we have focused on a class of conductivity models using
Tikhonov regularization that exhibit smoothly varying properties.
Thus we introduce a matrix W, based upon a FD approximation
to the Laplacian (V?) operator applied in Cartesian coordinates, to
reduce model curvature in three dimensions. The influence of the
smoothing constraint is controlled by the parameter 1. A common
recipe for its selection is based upon a cooling approach (Haber &
Oldenburg 1997). One carries out multiple solutions to the inverse
problem starting with a large fixed value for 1. As X is reduced, the
data error, represented by the first term in eq. (1), will decrease.
The process of reducing A can then be repeated until the data error
agrees with a target misfit based upon the assumed noise content of
the data.

2.1 Non-linear conjugate gradient minimization

In large-scale non-linear problems, as considered here, we shall min-
imize (1) using gradient-based optimization techniques because of
their minimal storage and computational requirements. We char-
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acterize these methods as gradient-based techniques because they
employ only first derivative information of the error functional in
the minimization process. Gradient-based methods include steepest
descent, non-linear conjugate gradient (NLCG) and limited mem-
ory quasi-Newton schemes. Newman & Boggs (2004) provide detail
derivation of the gradients and an efficient scheme for their compu-
tation. Here, the focus is on a NLCG minimization approach because
our past experiences have shown it to be the most efficient. The pre-
conditioned NLCG algorithm we use in the minimization of eq. (1)
is written as follows.

NLCG Algorithm

(1) seti=1,chooseinitial model m; and computer; = —Vo(m;)
(2) setu; = Mflr,»

(3) perform line search to find «; that minimizes ®(m; + «;u;)
(4) setm;;; =m; + o;u; and compute r;.; = —VO(m, )
(5) stop when |r; 1| < €, otherwise go to step 6

(6) set B = (rf, M ri — xT M 'r) /e M

(7) setu;yy = M,-jrlll‘iﬂ + Biviw;

(8) seti=i+1 and go to step 3.

The matrix operator M[l in the algorithm is a pre-conditioner,
which steers and scales the conjugate search direction u; such that
it more closely approximates the Newton direction. A properly cho-
sen pre-conditioner has a tremendous impact in accelerating the
algorithm’s convergence (Newman & Boggs 2004), however at a
higher computational expense. To use the NLCG algorithm sensi-
bly also requires efficient computation of the gradient r. Sometimes,
implementations of NLCG include a very accurate line search to en-
sure conjugacy. However, for the 3-D problems this is not practical
because the evaluation of the error functional is very expensive.
Moreover, conjugacy has little meaning in the non-linear and non-
quadratic context. Instead, we have developed a procedure that gives
an acceptable decrease of the functional with a minimal number of
evaluations. Newman & Alumbaugh (2000) discuss the issue and
show that it is possible to achieve acceptable decreases in the error
functional using a line search based upon quadratic interpolation,
safeguarded with back tracking. Usually, an additional forward mod-
elling application per source, defined by a transmitter operating at a
specific frequency, is all that is needed for the line search. This yields
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Table 2. Computational times and resources needed for all inversions carried out in this work. Hardware
specifications: Intel(R) Xeon(TM) CPU 3.60 GHz.

Inversion Number of CPUs Computing time Total computing
number (ny X ny xn; xXng) Iterations per iteration (min) time (hr)
la (reference) 144 (3 x4 x4 x 3) 87 32.5 47.1
1b (coarse-grid) 1443 x4 x4 x3) 97 5.1 8.2
2a (reference) 273 x3x3x1) 80 50.2 66.9
2b (coarse-grid) 273 x3x3x1) 75 1.3 1.6

3 100(5 x5 x4 x1) 250 4.7 20.0
4 64(4x4x4x1) 150 0.6 1.6
Sa 64(4x4x4x1) 21 4.4 1.6
5b 64(4x4x4x1) 24 15.4 6.2
Sc 64(4x4x4x1) 33 4.2 24
5d 64(4x4x4x1) 58 21.7 21.0
6 128 (4 x4 x 4 x 2) 172 19.8 56.7

' Sail line (recéivers) —_ '
4000 + Source positions s i
Reservoir contours -+

2000 i
E ot ]
>

-2000 r i

-4000 r g

-4000 -2000 0 2000 4000
X (m)

Figure 3. Inversion 1: Transmitter—receiver configuration for synthetic data
generation of a single-profile seafloor survey.

three forward modelling applications per source and per inversion
iteration.

2.2 The forward problem

Minimization of eq. (1) involves the error functional gradient V&,
that is, the derivative of ® with respect to the model parameters in
the vector m. The data part of ® and the predicted data d are linked
directly through the forward problem. It is described by the time
harmonic Maxwell equations in the diffusive approximation,

cE—VxH=-J )

VXxE+iouH=—-M, (3)

where a time dependence of ¢/’ is assumed (i = +/—1). For CSEM
applications, the typical range of the angular frequency w allows us
to neglect displacement currents.

Applied currents generate the electric and magnetic fields, E and
H, and are denoted by J and M for electric and magnetic sources,
respectively. The Earth’s electrical conductivity o is a function of
position that is allowed to vary in three dimensions. On the other

hand, we set the magnetic permeability u to its free space value
ILo. Variations in the magnetic permeability are rare, and are usually
confined to magnetic ores and some volcanic soils.

Our solution method for the forward modelling problem is based
upon the consideration that the number of model parameters, re-
quired to simulate realistic 3-D geology, can typically exceed 107.
Finite difference modelling schemes are ideally suited for this task,
because they can be parallelized to handle large-scale problems that
cannot be easily treated otherwise (Alumbaugh et al. 1996). Af-
ter approximating the Maxwell equations on a staggered grid (Yee
1966) at a specific angular frequency, using finite differencing and
eliminating the magnetic field (Alumbaugh et al. 1996), we obtain
a linear system for the electric field,

KE =S, 4)

where K is a sparse complex symmetric matrix with 13 non-zero
entries per row. The dimension of K is N, x N, where N, is the
FD grid’s total number of edges. Its diagonal entries depend explic-
itly on the electrical conductivity, o. The conductivity distribution
throughout the model space is to be estimated by the inversion pro-
cess. Since the electric field, E, also depends upon the conductivity,
implicitly, this gives rise to the non-linearity of the inverse prob-
lem. The fields are sourced with a grounded wire or loop embedded
within the modelling domain. The corresponding discrete source
vector S includes Dirichlet boundary conditions imposed upon the
problem. To avoid excessive meshing near the source, we favour a
scattered-field formulation to the forward problem. In this instance,
E is replaced with E; in eq. (4). The source term, for a given trans-
mitter, will now depend upon the difference between the 3-D con-
ductivity model and a simple background model, weighted by the
background electric field, Ey,, where E = E,, + E;. We favor simple
background models, such as whole space or layered half-space mod-
els that can be easily and rapidly simulated. Given the solution of the
electric field in eq. (4), the magnetic field can be easily determined
from a numerical implementation of Faraday’s law,

H= V x E.

®)

—iop
For realistic earth imaging, involving a large amount of data and
hence many sources, a large number of solutions to eq. (4) fol-
lows. Consequently, an efficient solution process is paramount. We
solve the forward problem to a predetermined error level using it-
erative Krylov subspace methods, using either a biconjugate gradi-
ent (BICG) or quasi-minimum residual (QMR) scheme with pre-
conditioning (Alumbaugh et al. 1996). In general we employ the
QMR method with a Jacobi pre-conditioner for marine CSEM type
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Figure 4. Inversion 1: Error functional ®, according to eq. (1), of synthetic single-profile data inversion.

problems. More elaborate pre-conditioners have been tested and
shown to be not that effective for this problem. These include sim-
ple Neumann and Least-Squares polynomials, incomplete Cholesky
factorization, and algebraic multigrid (AMG) (Newman ez al. 2004).
The AMG scheme is the most elaborate of the pre-conditioners
tested, and attempts to preserve the null space of the Maxwell op-
erator through properly designed grid transfer operators. While this
scheme can produce very fast solutions to the forward problem, it
thus far has been found to be unstable for use with highly com-
plex models. Another pre-conditioner considered has been found
advantageous for low induction numbers (Newman & Alumbaugh
2002). This owes to the poor solution convergence, caused by a
large null-space of the curl—curl operator contained in the matrix
K of eq. (4), as the field excitation frequency approaches the static
limit. However, for the frequencies considered in this work, we ex-
pect relatively small solution time improvements, compared to the
improvements achieved by optimized grids.

3 OPTIMIZATION OF THE
SIMULATION MESH

We assign a conductivity parameter, o, k=1, ..., M, toeachcell of
the model domain, where M equals the total number of model cells.
In the following, the model grid is denoted by €2 ;. The subset €2,
Q shall represent the inversion domain, with m model unknowns.
The parameter o is real valued and collectively stored in the model
vector m = X ,,, which is piecewise constant. Further, the finite-
difference simulation grid Qg of size N., where N, equals the
number of FD mesh cells, is introduced. Both grids are Cartesian
with conformal grid axes along the x, y, and z-directions. Usually,
one has Qg = Q,,/(N,. = M). For most cases within this work, the
(computational) optimization involves coarser and/or smaller (in
terms of grid extensions) simulation meshes, hence N, < M.

The solution of the forward problem requires a conductivity map-
ping from 2, to Qy, that is, the computation of an effective con-
ductivity on the edges of the FD mesh, where the electric fields
E are sampled. For a given 3-D mesh Qg we define the vector of
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directional edge conductivities,

s = (of,0{,0f o', 0,07 oy, on , 0% )T
Nl 1291915250500 55 ONs ONo On,

= (01", ..

for building the N, x N, FD stiffness matrix K of the linear system
(4). Note that N. and N, denote the total number of grid cells and
edges, respectively, belonging to the grid Q. To compute the edge
conductivities, we introduce a linear mapping operator My, s,

M(EM) = Zs, (M . QM — Qs)

T
e e
,ai(,,...,oNe) R

Consider a given edge 7., belonging to the cell ;. of the FD mesh
Qg, for the example of an edge along the x-axis. In the case Q2 =
Qg, the corresponding element of ¥ 5 is computed from
dv;

3 dv

where w; are weights determined by volume fractions. Fig. 1(a)
shows that the four cell conductivities o ; are given by the four model
cells connected by the edge where o7, (red arrow) is sampled. These
four adjoining cells describe a parallel circuit. Hence, each line of
the matrix operator My, involves an arithmetic average of the
form as in eq. (6). For the equal-grid case, its corresponding edge
i . thus has four non-zero entries w; = 41.

In the case 2, # Qg, we employ a material averaging scheme
based on an integro-interpolation method mentioned by Moskow
et al. (1999). In principle, the method allows to compute edge con-
ductivities on the grid Q¢ from a series of parallel circuits on €2 ,.
Moreover, there may exist an arbitrary translation, assuming confor-
mal grid axes, between €2, and Q5. It can be seen that the example
of'eq. (6) represents a special case of the more general formulation

(©6)

4
e X
0, =0;, = Z(’iww w; =
i=1

, S (g - B
of =0 = Z ijmdvf Ax; | AX,, 7
Jj= o=

where

(i) AX;.=length of the edge i, (here along the x-axis),
(ii) J = number of discrete parallel circuits P ; along AX;_,
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Figure 5. Inversion 1: Data fits for all seven sources (survey configuration shown in Fig. 3), exemplified for the excitation frequency f = 0.25 Hz. Initial (grey)

and final fits (red) for both reference and coarse-grid inversions are shown.

(iii) V; = total volume of a discrete parallel circuit P ;,

(iv) 1; = number of model mesh cells included in the volume
V ; or overlapped by V' ;,

(v) dV; = volume fraction of o'; contributing to a parallel circuit
P;.
(vi) Ax; =segment length of the parallel circuit P ; (here along
the x-axis).

In eq. (7), the inner arithmetic average produces the effective con-
ductivity owing to a parallel circuit of the conductors o ;. Further, the
outer sum represents a serial integration of the parallel circuits along
the total edge length A X ., where Z/J.ZI Ax; = AX;, . The averag-
ing scheme is best illustrated in two dimensions. In Fig. 1(b), Q,/
and Qg are indicated by the black and red grid lines, respectively.
For this case one has J = 4, I, = 2 for all j, and the dependen-
cies of P; on the overlapped cells of €, are: P (01, 04),P2(02,
04), P3(03, 04),P4(03, 05). Each volume d V; is given by the
overlap of the integration area assigned to the edge o, (shown in

pink) with the volume of the corresponding model cell o ;. Note that
Z,I; dV; = V;. Obviously, to obtain a,r: and oi for the 3-D case,
this serial/parallel circuit integration is carried out along the y and
z edges of the simulation grid cell i ., respectively.

Since the inversion unknowns o, belong to €2,,, a mapping from
Qg to 2, is required for computation of the gradient vector r in
the NLCG algorithm. Consider the data component, V®,, of the
gradient, that is the term —V ®(m) involving only the first term of
the right-hand side of eq. (1),

Vo, = —Re([DJ][D(d° — d")T").

Computing V&, implicitly requires the Jacobian, J. Note, however,
that we never form J explicitly. Its elements are

Ji = s
Jk do,

j=1,....Nyk=1,... M.
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Figure 6. Inversion 1: Final model solution for reference (upper) and coarse-grid (lower) inversions.
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Figure 7. Inversion 2: Error functional ®, according to eq. (1), of synthetic single-profile data inversion.

In terms of the electric field, a Jacobian element is defined by

, OE

T =45 50

where q; is the jth column vector of a Ny x N (N, = size of
d®) interpolation operator, which maps the electric field solution E
from Qg onto the N, detector locations defined on 2,,. The data
sensitivities % follow from differentiating eq. (4) with respect to
Journal compilation © 2007 RAS, 172, 513-535
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the model unknowns o, (Newman & Hoversten 2000),

OE _ K—l(E - %E) ®)

aak Bak 30’k

Note that the term % is non-zero/zero for a scattered/total field so-
lution. The data sensitivity for the kth model parameter has non-zero
entries for these edges i, that have a contribution from o through
the average (7). In the case 2, = Qy, this amounts to 12 edge con-
tributions, arising from the edges that define the boundaries of the

model cell 0. In other words, as illustrated by the additional arrows
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Figure 8. Inversion 2: Final model solution for reference (upper) and coarse-grid (lower) inversions.

in Fig. 1(a), there are four edge conductivities for each Cartesian
direction, which depend on o, through their corresponding average
exemplified by eq. (6). In the general case, we denote the number of
edge contributions by N (k). Then it follows from the chain rule

K R 9K doy
dop —~ dof Doy

©

and a similar expression for 25 3= The inner derivatives of (9)

are obtained from the derivative of eq. (7),

’305

309 S de
z Ax; o;dV; 7. 10
o AX Z Y ( Z ) j (10)

e j=

Here, J" < J is the number of segments (parallel circuits P ;) with
a non-zero contribution from oy. For Q) = Qg, one has J' =
1, Ax; = AX;,,and hence =% = wy, which are the corresponding
weighting coefficients of the simple average (eq. 6). The general
case is again illustrated in two dimensions in Fig. 1(b). For this
example, the model cell o 4 (yellow rectangle) shall also correspond

to the fourth model unknown (k£ = 4). Then eq. (10) becomes

-2
do 1 & v,
e — Ax; [ — dr | =2
o4 Z (VZ ) Z

lc]

Here, J' = 3, because o4 contributes to the three parallel circuits
Pi(o1,04), P2(02,04)and P3(03,04).

4 IMPLEMENTATION
OF CONSTRAINTS

Implementation of constraints is helpful in reducing solution ambi-
guity in the imaging process and avoiding non-physical conductivity

estimates, that is, negative or unrealistically high conductivity es-
timates. Here, we consider box constraints to restrict the electrical
conductivity within the imaging volume to be bounded. Specifically,
one requires

a, < my < by,

for the kth model parameter. Here, we consider box constraints to
bound the electrical conductivity within the imaging volume. An
active set method requires the model update to be strictly feasi-
ble. When components of the current model are on the bounds, the
method checks the steepest descent direction to determine if the
corresponding components of the pending model update will be no
longer feasible. If this is the case, we deflate to zero those corre-
sponding components in the search direction that will be used in
the line search process to update the model. Hence, there will be
no changes in these model components on the bounds during and
after the update. On the other hand, if during the line search, a trial
step shows that a bound would be violated, backtracking along the
deflated search direction keeps the updated model strictly feasible.
Implementation of an active set scheme to enforce bound constraints
is straight forward, but may cause convergence degradation of the
NLCG algorithm (Nocedal 1995).

An alternative involves usage of transformation functions that
map the bounded conductivity parameters to an unbounded domain
in the transform space. Our inversion scheme allows to choose be-
tween two such transformations. The first is an inverse hyperbolic
tangent transformation and the second is based on log parameters. In
effect, both schemes transform a constrained inverse problem to an
unconstrained type. Similar types of transformations within mul-
tidimensional frequency- and time-domain inversion frameworks,
based on logarithmic parameters, have been quite effective in insur-
ing that the electrical conductivity is strictly positive (Newman &
Alumbaugh 2000; Commer ef al. 2006).
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Figure 9. Inversion 3: Transmitter-receiver configuration of 3-D seafloor survey with grid layout.

Details of the transform method for enforcing upper and lower related to the original model parameter by the expression
bounding constraints are as follows. Consider the first transforma-
. 1 2m k= bk — ay
tion where x; = tanh <b—) Loar < my < b, (12)
& — dk
by — ax by +a;\ . . . .
mp = 5 tanh(x,) + 5 ;0 T00 <X < 0Q. Differentiating eq. (11) with respect to x;, utilizing eq. (12),
(11) yields
Here, x is the representation of the model component in the trans- omy by — ay 2 _1 [ 2my — by — a
. — = sech” |tanh™ [ —— ) |. (13)
form space, and m; = o . Further, the transformed parameter is Xy 2 by — ay
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Figure 10. Inversion 3: Error functional @, according to eq. (1), of synthetic multiprofile data inversion.
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Figure 11. Inversion 3: Final model solution.

The hyperbolic secant function in eq. (13) is always positive and
bounded and when squared is similar to a normal Gaussian distri-
bution. It achieves its maximum value of (b; — a;)/2 when m; =
(b + ax)/2.

For the second option of logarithmic parameters one has for the
equivalent of eqs (11)—(13)

_ ay + bk exp(xk) .

—00 < X < 0Q. 14
1+ exp(xi) ‘ (1

Table 3. Inversion 4: endpoint positions (x, y, z) of transmitter dipole in
metres for imaging study with source signature correction.

True (displaced) positions Assumed positions

Endpoint 1 Endpoint 2 Endpoint 1 Endpoint 2
—3100,0,0 —2900,—50,—50 —3100,0,0 —2900,0,0
—2100,0,—30 —1900,—20,0 —2100,0,0 —1900,0,0
—1100,—100,0 —900,—100,0 —1100,0,0 —900,0,0

0,0,0 200,0,0 —100,0,0 100,0,0
900,100,0 1100,0,—60 900,0,0 1100,0,0
1900,0,0 2000,0,—20 1900,0,0 2100,0,0
2900,—50,—20 3100,30,—70 2900,0,0 3100,0,0
xi = log(my — ay) — log(by — my);  ax < my < by. (15)

om by — a;) exp(x

K _ (b — ay) exp(xr) (16)

0% [1 + exp(x)I?

The graphs in Fig. 2 exemplify both transformation types. One can
observe the linear behaviour of both transformation functions when
the unbounded parameter has values in the vicinity of zero.

Using eq. (13) or (16), it is a simple matter to recast the cost func-
tional gradient in terms of the transformed variable, where compo-
nent wise we have

AP 9D amy
Bxk - Bmk Bxk

)

Another advantage of this type of transformation is that it may pro-
duce sharper image rendering if tight bounds are selected from a
priori information, as will be demonstrated in a synthetic example
below. However, if the bounds are too restrictive, then it is possible
that unacceptable data fits will result. With the transformed expres-
sion for the gradient in eq. (17), one can apply the NLCG algorithm
directly to the transformed problem, which implicitly enforces the
bound constraints. It is also understood that the regularization op-
erator now applies directly to the transformed unknowns, x;(k =
1, ..., m), in the minimization procedure.
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Figure 12. Inversion 4: Error functional @ for data inversion without (black) and with (red) source signature correction factor.
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Figure 13. Inversion 4: Final model solution for inversion of data set with distorted transmitter endpoint positions. Upper/lower figures are created from
inversions without/with source signature correction factor as an additional inversion parameter.

5 SOURCE SIGNATURE CORRECTION

In an inversion scenario with real field data, it is likely that data
distortions due to systematic measurement errors vary with the
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transmitter’s frequency. Moreover, each distinct source may be af-
fected differently by positioning errors or local inhomogeneities in
its vicinity that are not accounted for in a starting model. In time-
domain forward modelling, such transmitter-characteristic data
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Figure 14. Inversion 5: Error functional & for inversion of distorted data without SSC factor and PC activated (black). Red, green, and blue curves show results

when PC, SSC and both PC and SSC are active, respectively.

distortions can be taken into account by convolution of the mod-
elling time curve with the Earth’s impulse response measured nearby
the transmitter. In the frequency domain, this translates to multipli-
cation of the right-hand side of eq. (4) by a complex-valued scaling
factor s,

KE = 8. (18)

Following the findings of Pratt (1999) for seismic waveform in-
version, we found that it may be beneficial to assign an unknown
complex scaling factor to each CSEM source, thus taking into ac-
count data distortions in the form of both amplitude and phase shifts.
In an inversion framework, this is realized by augmenting the inver-
sion parameters with a set of scaling factors, where one factor can
be assigned to each distinct source or to multiple sources. Hence,
one solves a source signature estimation problem together with the
imaging problem by also minimizing the data part of eq. (1) with
respect to s, where s is embedded within dP, leading to
ol gp*
_ra (19)
i Ls L

In practice, s is computed after each model update during an inver-
sion iteration and applied to the modelling data dP afterwards.

An alternative way of addressing data distortions within an in-
version framework would be the direct recovery via additional un-
knowns representing transmitter characteristics. This leads to the
need of solving a problem that occurs in optimal experimental de-
sign. Generally, optimal experimental design aims at identifying
experimental conditions, including sampling schemes, that deliver
measurement data which are most sensitive to unknown param-
eters. Applying this concept to data distortions due to erroneous
transmitter characteristics, one would first have to identify the types
of transmitter characteristics that are in question. Compared to the
simplicity of the method proposed here, such a scheme may become
much more complicated, and thus shall not be investigated further
within this work. As demonstrated below, the source signature cor-
rection may be helpful in certain scenarios. However, it shall be
emphasized that a careful data pre-processing remains essential for
optimal imaging results.

6 EXPLOITATION OF SOLUTION
PARALLELISM

In a real industrial-sized data application, up to hundreds to thou-
sands of transmitters might have to be employed, in order to image
the subsurface at a sufficient level of spatial resolution and detail for
mapping reservoirs (Carazzone et al. 2005). This can lead to tens
of thousands of solutions to the forward modelling problem for a
single imaging experiment. Hence, the computational demands for
solving the 3-D inverse problem are enormous and non-trivial. To
cope with this problem, our algorithm utilizes two levels of paral-
lelization, one over the modelling domain, and the other over the
data volume. All processor communication is carried out using the
Message Passing Interface (MPI) software library.

6.1 Model decomposition

In solving the forward problem on a distributed environment, we
first split up the FD modelling domain, not the matrix, into a
Cartesian topology. The details of this scheme are outlined by
Alumbaugh et al. (1996). Thus a forward modelling problem is
solved amongst a number of N,,. = n, x n, X n. processors. As
the linear system is relaxed, which involves matrix—vector products
on each of the N,,. processors, values of the solution vector at the
current Krylov iteration, that are not stored on the processor, must
be passed by neighbouring processors to complete the product. In
addition to this message passing between neighbouring processors,
several global communications are carried out to complete the dot
products needed for the Krylov relaxation iterations. The solution
time’s rate of decrease using this kind of parallelization flattens with
increasing N .., since the overhead due to message passing becomes
more and more dominating.

6.2 Data decomposition
To avoid a message passing overhead, a second level of paralleliza-

tion is realized by distributing the data, that is, the transmitters
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Figure 15. Inversion 5: Data fits exemplified for the source centred at x = 0 m of the survey configuration shown in Fig. 3. The excitation frequency is f =
0.25 Hz. The inverted data is given by the black symbols. Data computed from the inversion result are shown for the case without using SSC (blue) and for the

case using both SSC and PC (red).

of a data set, over groups of processors. With a number N gy, of
such processor or data groups, one has thus a total number of tasks
Niotat = Ny X N gara. This allows to keep a balanced ratio between
Ny, and the size of the forward problem, which is dictated by the
size of its corresponding FD mesh Q. At the same time, an arbi-
trarily large number of CPUs can be employed, as the number of
data groups, N g, can be increased linearly with the total number
of transmitters employed in the imaging experiment.

One is interested in achieving maximum load balancing among
the processor groups assigned to each data group, because global
communication to compute dot products needs to be done several
times per inversion iteration. Consider a set of transmitters where
source—receiver configurations and source excitation frequencies
vary. First, optimized FD meshes for this set may vary considerably
in size, that is, the number of grid nodes. Second, convergence of
the Krylov solutions are prone to deteriorate with high model con-
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ductivity contrasts and, unless special pre-conditioning techniques
are used, low excitation frequencies. Hence, bottlenecks may arise
from large Krylov convergence differences between data groups. To
achieve good load balancing, the transmitters are distributed among
the data groups such that each group has a similar workload in terms
of Krylov convergences. These can be estimated in advance from a
trial inversion iteration. However, it shall be noted that convergence
characteristics are subject to changes during later stages of an inver-
sion, owing to changing model properties. In this work, all grid sizes
are similar for the shown examples. Thus, we make the workload
distribution dependable only on the transmitter frequencies, while
N, is kept constant for each data group.

The data decomposition is highly parallel. The main computa-
tional burden occurs with the forward FD solves. We have achieved
nearly perfect scaling with this scheme. Provided sufficient compu-
tational capacity, it allows for realistic data sizes and 3-D imaging
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Figure 16. Inversion 5: (a) The inverted data set was created from a seabed model including a conductive upper layer of 200 m thickness with a randomly
distributed conductivity between 4 and 10 Sm™!. (b) Inversion 5a: No pre-conditioner (PC) and no source signature correction (SSC) enabled. (c) Inversion
Sc: Without PC, but SSC activated. (d) Inversion 5d: With both PC and SSC enabled, showing a strongly enhanced image at depth. Shown are both xz and yz

sections.

volumes to be analysed on time scales acceptable to the exploration

process.

7 SYNTHETIC MARINE CSEM SURVEY

EXAMPLES

Synthetic inversion examples using data from a simulated marine
environment are presented. The model consists of a resistive reser-
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voir (0 = 0.02 Sm™!) of size 3 x 3 x 0.3 km along the x, y and
z coordinates, respectively. The target is embedded into a homoge-
neous and conductive background (¢ = 1.4 Sm™") and its upper
boundary lies at a depth of z = 1200 m below the seafloor (z =
0 m). Inversion results of different transmitter-receiver configu-
rations will be shown below. Synthetic electric field data for the
frequencies 0.25, 0.75 and 1.25 Hz were generated. Normally dis-
tributive Gaussian noise was added to the data, based upon three
percent of the measurement amplitude. In addition, any 